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A Light Beam Waveguide Using Hyperbolic-
Type Gas Lenses

Y. SUEMATSU, MEMBER, IEEE, K. IGA, axDp S. ITO

Abstract—This paper is concerned with the optimum design of a
light beam waveguide constructed with a proposed lens-like medjum,
namely, a hyperbolic-type gas lens which has a hyperbolic tempera-
ture distribution on its transverse cross section. In such a medium,
the temperature distribution is ideally quadratic in the transverse
directions, and so the mode conversion due to the higher order varia-
tion of the diz=lectric constant can be minimized. Moreover, this guide
has the following merits; the design procedure is simple, the mode
matching at the input part is easy, and it is possible to construct a
waveguide using ordinary air as the lens medium. And this con-
sideration can be easily extended to the guide with curved configura-
tion. It was shown that the experimental convergency of this gas
lens was in agreement with the theoretical one.

I. INTRODUCTION

HERE ARE many reports on a light beam wave-
T guide, and as for the focusing element, a sequence

of lenses [1], or reflectors [2], or gas lenses [3]-
[5], are considered.

As an example of a beam waveguide using gas lenses,
Tien et al., proposed a helical quadrupole lens-like
medium for a beam of Gaussian field distribution [5].

This paper is concerned with the analysis and experi-
mental study of a light beam waveguide constructed
with a proposed lens-like medium, namely, a hyperbolic-
type gas lens (HGL) which has a hyperbolic tempera-
ture distribution on its transverse cross section [6]. The
transmitted mode is assumed to be a beam of Gaussian
field distribution. In such a medium, the temperature
distribution becomes exactly quadratic in the transverse
directions and the distribution of the dielectric con-
stant becomes very close to quadratic, and so the mode
conversion due to the higher order variation of the di-
electric constant is very small [7]. And it is possible to
have the optimum design of a beam waveguide con-
structed with this type of gas lenses. At the optimum
condition, the maximum beam spot of the transmitted
mode in the guide becomes minimum which, in turn,
minimizes the diffraction loss.

1I. A Beam WAVEGUIDE CONSTRUCTED WITH
HvyperBoLiCc-TyPE GASs LENSES

A. Hyperbolic-Type Gas Lens

The transverse cross section of a proposed hyperbolic-
type gas lens is, in principle, shown in Fig. 1. Two pairs
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Fig. 1. Cross-sectional view, in principle, of hyperbolic-type

gas lens.

of hyperbolic-type heat conductive pipes are heated or
cooled by +AT or —AT °C, respectively, compared
with the temperature T, on the center axis, and it is
assumed that there is no convection. The separation of
each pair of pipes is 2¢. Then the temperature distribu-
tion in the medium is given by I'=T+AT(x%2—y?) /a®
using Laplace’s equation.

In this case, the distribution of the dielectric con-
stant in the medium obeys Clausius-Mossotti’s relation
and is calculated as follows, under the condition of
To>AT (x*—y%)/a?,

«(O)[1 — (g9)* + (g9)%] 1
g = (e — DAT/(To)/o, €0) = e, 2)

where €, and €, are the dielectric constant of the vacuum
and specific dielectric constant of the gas medium at
T, respectively. From (1), we can see that this medium
has convergent properties in the transverse x direction
and divergent properties in the v direction.

The characteristic spot size wy of this medium is given
by the following equation [8],

€

! The characteristic spot size wp is a parameter which charac-
terizes the convergency of a lens-like medium.

This corresponds to a parameter in Reference [4]. But in this
paper, the definition of a spot size is of the Tien type [5], namely, the
beam radius at which the beam intensity is down to 1/¢ of its max-
imum,
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wo/a = (1/v/k(0)g)/a
= 1/[(k(0)a)*(e: — D)AT/To]*, 3)

where £(0) =w+v'e(0)uo is a propagation constant of a
plane wave on the center axis. The parameters of the
medium must be chosen so that wp/a <1 to utilize the
convergent action of the medium,

When the axial length of the gas lens is finite, the edge
effect must be taken into consideration. If the pipe
separation 2a¢ is much smaller than the axial length,
such an effect may be neglected.

The heating power W of the medium per unit axial
length is given by

W = 4kAT (watt/m) 4)

where « is the specific heat conductivity of the medi-
um, For example, in case of air for the gas medium, «
becomes 2.6X1072 (watt/m °K), and so W=0.13
(watt/m), when AT =2.5°C.

Instead of using the hyperbolic cylinders as shown in
Fig. 1, one may use circular cylinders as the heat con-
ductors and obtain the nearly quadratic temperature
distribution. To minimize the other nonquadratic
terms in the distribution, we can choose the value of
the radius 7 of the circular cylinders, given by the
following relation [9],

r = 1.15a. (5)

B. Amnalysis of a Proposed Beam Waveguide

The proposed beam waveguide is constructed with a
number of hyperbolic-type gas lenses of axial length J,
as shown in Fig. 2. The spacing between the neighboring
gas lenses is /p, and adjacent gas lenses are rotated
around the axis by 90° with respect to each other. Two
neighboring gas lenses constitute a unit section, and the
beam waveguide treated here is a periodic structure con-
structed by connecting many of the unit sections in tan-
dem. According to Fig. 2, the gas lens at the left side
has convergent properties, and the next has divergent
properties, respectively, in the x direction.

In the y direction, on the contrary, the gas lens at the
left side has divergent properties, and the next has con-
vergent properties, so that the properties of the me-
dium in the x or y directions are periodically repeated
with the same periodicities but with mutual retardation
of the half section in the x or ¥ directions, respectively.
Therefore, one may consider only one direction.

The natural mode of the waveguide is an axially
asymmetric Hermite-Gaussian beam, and the spot size
of the guided beam becomes maximum at the center of
the convergent section (=s,) and minimum at the center
of the divergent section (=s,) in the x or y direction.

Now, we specify the first half section of the unit sec-
tion of the guide as from the center of the convergent
component to the center of the next divergent com-
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ponent, as shown in Fig. 2. Then the F matrix, which
characterizes the wave property of a beam waveguide
(Appendix), associated with the first half section is cal-

culated as follows,
- A, By
Fh - < >’ (6)
Cv Dy

An = cos ¢ cosh ¢ — sin ¢ sinh ¢ — Q sin ¢ cosh ¢
B = jgk(0)[sing cosh ¢ — sinh ¢ cos ¢
+ Q sinh ¢ sin ¢]

where

, . . ¢
C, = h h
=7 ) [sin ¢ cosh ¢ + sinh ¢ cos ¢
=+ Q cos ¢ cosh ¢]
D;, = cos ¢ cosh ¢ + sin ¢ sinh ¢ + Q cos ¢ sinh ¢
and,
we? = ¢ = gly/2, Q = gl. (8

~ gk(0)
Here, ¢ is a normalized length of a gas-lens section
and Q is a normalized spacing between neighboring gas
lenses.
Using (41), (33), and (5), the normalized beam spot
sizes s,/wo and s,/wq are calculated as follows.
Se [ tan ¢ -+ tanh ¢ + Q
— = | cot?¢-
Wo —cot¢ + cothe 4 Q
tan ¢ - coth ¢ + Q]““
cot¢ — tanh¢ — Q
—tan ¢ + tanh ¢ + Q
—cot ¢ + coth¢ + Q
cot ¢ — tanh ¢ — Q:ll/‘1 ©
tan ¢ + coth ¢ + Q
In order to make use of the stable guide mode, the
spot sizes s, and sq must be finite and positive real. This

stability condition is obtained from (9) and expressed by
the following equations.

S
LA !:coth2 ¢-

Wo

Q-+ tanh ¢ < cotp < Q + coth ¢
—Q — coth¢ < tan¢ < — Q — tanh ¢.

(10)
(11)

Equations (10) and (11) have the same meaning as
the stability condition (40) obtained in the Appendix.

As shown in (10) and (11), there are many stable and
unstable regions with respect to ¢. In the stable region,
the path of the center part of a Gaussian beam is also
stable because the # matrix serves also as a modified
ray matrix which characterizes the ray property [13].

The relations between s./wq or sq/w, and ¢ in the first
stable region are shown in Fig. 3 with Q as a parameter.
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Fig. 2. (a) and (b) show a schematic view of beam waveguide using
hyperbolic type gas lenses, each of which is periodically rotated by
90° around the center axis. (c) and (d) show the variation of the
beam cross section in the y-z and x-z planes, respectively. (e)
shows the cross section of the beam in the transverse plane.

If >>1, and Q##0, s./w, and sq¢/wo are approximated
as follows,

s 1 [1 + ¢>QT/4 {

1 — 40

o~ — = (p—0
i (¢6—0)

/.
s 11— ¢Q7e W) 2
wo VoLl + ¢Q Vo
C. Optimum Design of the Beam Waveguide

In the first stable region, s,/wp has the minimum value
(so/Wo)m at ¢ =, when Q is set to be constant. We can
get the relation between ¢, and Q from Fig. 3 and it is
shown in Fig. 4. In this figure, (s./wo)m and (s./wo)m at
& are also shown. When ¢>>1 and 0>>1 these relations
can be approximated as follows,

én =2 0.6180/Q }
(5o/Wo)m =2 1.8248+/0 = 1.4347/\/¢m.

and these values are shown by the broken line in Fig. 4.

Let us define the optimum design of the beam wave-
guide, for which the maximum spot size s, in the wave-
guide becomes minimum, which, in turn, minimizes
diffraction losses and mode conversion effects as shown
in the next section.

(13)
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Fig. 3. Normalized spot sizes s./wo and s¢/w, vs. the normalized

length ¢=gl,/2 with a parameter as the normalized spacing
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the divergent component, respectively.
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Fig. 4. émy (S6/W0)m, angi (§d/w0)m vs. Q=gl, under the condition of
se/wo) becomes minimum, namely, optimum condition.

At the optimum condition, the normalized length ¢ of
the gas lens section becomes ¢ = @.

Next, we consider the optimum design procedure of a
waveguide using hyperbolic-type gas lenses. The separa-
tion 2¢ of the paired conductors must be set so that
s./a<0.3 to maintain small diffraction losses. This
parameter is expressed by the following relation with the
help of (3) as,

se/ @ = (So/ wo)m(wo/ @)

&)
Wo/ m
With this relation, we can determine the focusing
parameter of the gas lens. When (s./wo)» and wo are
given, a is determined by (14).
At the optimum condition ¢ =¢,, the length of the

gas lens [, and the spacing between gas lenses [/, are ex-
pressed as follows, with the help of (8).

1
—- (14
[k(0)2(e, — 1)AT/(TOE,-)]1/4 Va (14)
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Fig. 5. The design chart which shows the relations between [,
l,, a, and Q=gly. Temperature difference AT is restricted, equal
to 2.5°C, if 0=1.6 and AT=42/a*% if Q>1.6. The gas medium
is ordinary air at room temperature and 1 atm,

TABLE I

NuMERICAL EXAMPLE OF THE PARAMETERS
OF THE BEAM WAVEGUIDE

1y (m) 1, (m) a (mm) | s, (mm) | AT (°C) Q
0 2.9 5 1.0 2.5 0
10 2.9 10 2.0 2.0 1.8
50 8.8 22 4.4 0.71 2.6
2 m 2 md
=22 o d 15)
g [(e,. - 1)AT/(€rT0)]1/2
a

¢ e —DAT/(eTY]

Substituting the value of ¢ obtained from (14), which
corresponds to a given value of s./a, into (15) and (16),
we can get the relations between Q and /, or /,.

In this way, if T, AT, e.—1, k(0), s,/a, and Q or I,
are given, ¢ and [, are numerically determined.

It is confirmed experimentally, in Section V, that the
maximum temperature difference AT (°C), when the
operation of the gas lens is normal, is restricted by the
value of spacing ¢ (mm) as AT =42/a'% for a gas medi-
um of air with 1 atm at room temperature. Taking ac-
count of this fact, relations between Q and [,, I, and
a are, for example, shown in Fig. 5, where the gas
medium is air with 1 atm at 7,=293°K, namely
e—1=546X10"% and s.,/a=0.2, k(0)=9.929X 10"
(m™1), and A=0.63 u. AT is chosen to be 2.5°C at a
region of parameter Q being smaller than 1.6, and AT is
chosen to be 42/a'% at a region of Q larger than 1.6.
For this case, numerical examples are shown in Table I.

In case a slightly curved guide has a corresponding
parameter of /=0 in Table I, and the beam center is
displaced by Ax {rom the guide center axis to be guided
smoothly along the guide, the guide radius of curvature
R becomes R=4 km, when Ax=1 mm [6]. But if the
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guide is irregularly curved in a manufacturing process,
the permissible guide radius of curvature should be
much larger than 4 km [3], [4].

ITI. DirFrACTION LossEs AND MoDE CONVERSION
A. Diffraction Losses

The effect of absorption of energy of the beam edge
at the wall or at the heat conductive pipe of the gas lens
can be regarded as diffraction. It is important to obtain
the relation between the diffraction loss and the value
of s./a.

Calculation of this relation seems to be difficult for
this type of gas lens because the configuration of the
wall is so complicated, but an approximation may be
possible. According to Fig. 2, the effect of the wall on
the absorption is most pronounced at the axial center
of the convergent component because the beam spot be-
comes maximum at that point. When we consider this
diffraction problem as a two-dimensional problem, it
may be assumed that the effect of the wall of the gas
lens is approximated by the effect of the black absorbing
plate of infinite extent at the transverse direction with
an aperture of width 2a¢. This treatment is equivalent
to the method of determining the diffraction loss in a
Fabry-Perot resonator by Fox and Li [10].

We put the normalized electric field distribution in the

x direction as
E(x) = 1/(v/5 /e teot | 5] < } -
I x] >a

=0

at the aperture. We extend E(x) using the higher order
Hermite-Gaussian function as follows:

1 0
E(@) = ——= Z A,,Hn(x/sc)e—lmz/sc)ﬁ_
\/Sc ’\4/77' n=0

The amplitude 4, of the fundamental mode can be ob-
tained by using the orthonormality of the functions.

In this way, the diffraction loss per unit section of the
guide, considering the effects both in x and y direction,
is calculated as follows

(18)

o0

13y

v2X1

=201~ | 4] = —
Na = 0)_'\72_;

where X1 =a/s.. The numerical relation of 7, vs. s;/a is
shown in Fig. 6.

(19)

B. Mode Conversion

If the distribution of dielectric constant at the trans-
verse cross section in the gas lens contains nonquadratic
terms, the transmitted Gaussian beam suffers mode
conversion. In the case of hyperbolic-type gas lens, the
distribution of the dielectric constant is more precisely
calculated than (1) from Clausius-Mossotti’s relation,
and expressed as,
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e=€(0) [1— (g2)*+ (g9) 2+ A4 (x* o'+ 2xzyz)],} 20)
It/ gt = AT/(Toa?),

where only terms up to the fourth order are taken into
account.

Because the fourth-order terms of x or ¥ in (20) are
usually small compared with the quadratic order terms,
then the effect of the fourth-order terms can be regarded
as small perturbations. In this way the mode conversion
ratio 1. (=the power converted to higher modes/the
power or the incident Gaussian beam) can be calculated
with perturbation methods [7], and the 5. per unit
section is given by the following equation:

1o = (AT/T0)*(Ng/a?)* Da(1), (21)

where

b= (s2/wo* — 1)%/(s.2/we® + 1)°

3\ 2¢4(3282 + 56t + 8) .
Do) = (§7;> 1-* I

(22)
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The relation between 7, per kilometer and the length of
the half section of the guide [ (=1Iy+1,) is shown in Fig.
7, at the optimum condition of the guide. The spot size
ratio s,/we should be small in order to minimize the
mode conversion effect.

The mode conversion due to the circular shape of the
rod is neglected in the calculation of this perturbation
problem with (20), if we choose the radius r of the rod
as in (5), because the fourth-order terms of x or y in the
representation of e have disappeared [9].

IV. MopeE MaTcHING

If the beam entering this beam waveguide is an axially
symmetric Gaussian mode, one has to match it to the
natural mode of the guide [11], [12]. The mode match-
ing is performed with, for example, two or three thin
lenses as shown in Fig. 8.

In this case, we consider mode matching at the center
part of the free space between two gas lenses. The wave-
form coefficients [8] of the natural mode at this point,
namely Pj, 1 (x direction) and Pi,» (v direction), are
calculated as follows, with the help of (39).

1 %(0)
Pin,l = Pin,2* = —2+j—
in fin

where P;, »* is a complex conjugate of Py 2 and,

(23)

2
Win = Wo [cos 2¢ {Q cosh 2¢ -+ <1 + %) sinh 2¢}

(o204 5 s )

-+ { cosh 2¢ - 7 sinh 2¢

2 1/2
Ao (147) s ef
Q .
X |1 — <cos2¢| cosh 2¢ | 7 sinh 2¢
Q2
+ 1sinh 2¢ <Q + <1 + Z) sin 2¢>

0? 21174
— 1 gin 2¢ <Q cosh 2¢ -+ (1 + Z) sinh 2¢>>} ]

)2

= — 2wy’ l:cos 2¢ {Q cosh 2¢ + <1 + %—) sinh 2¢}

+ (cosh 2¢ + % sinh 2q>>

o (1+5)oef ]
X [sin 24 {Q cosh 2¢ + (1 -+ —Q£> sinh 2¢}
+ %) sin 2¢} :l_l.

+ sinh 2¢ {Q + <1 (24)
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Fig. 8. A method of mode matching,

According to Fig. 8, the first symmetric lens L, is
placed at a point on the center axis in order to match
the incident spot size to become w;, at the matching
point. If the waveform coefficient at the matching point
is P’ given by

1 ny k(0)

win2 f,

then we must adjust the imaginary part of P’ to match
the imaginary parts of P;,1 and P, 2 in x and y direc-
tions. For this purpose, two-dimensional thin convex
and concave lenses L; and L, whose focal lengths are
Jfr and fe, respectively, are useful. The values of fi and fs,
for which the matching condition is obtained, are given
by the following equation, using (23) and (25).

A
I N

_ S
F+fm

V. EXPERIMENTS WITH A HypErRBOLIC-TYPE
Gas LENs

P = (x and v direction), (25

Si=
(26)

Ja

To confirm the design theory of the hyperbolic-type
gas lens, we made some experiments with a hyperbolic-
type gas lens. Four types of the gas lenses, type A, B, C,
and D, with different dimensions were used. The cross-
sectional view of the experimental gas lenses of type
A, B, and D are shown in Fig. 9(a), (b). Circular
cylinders made of brass with radius  were used instead
of ideal pipes with hyperbolic cross sections. The gas
medium and some parts of the rods are insulated by a
cardboard from the surroundings, as shown in Fig. 9
(a), (b) by a dotted line. At type C, cardboards are in-
serted between the hot and cooled brass cylinders act-
ing as thermal insulators, as shown in Fig. 1. The dimen-
sions of the experimental gas lenses are shown in Table
II.

The temperature of the cooled pair of pipes was held
at room temperature with radiators and the hot pair
were heated by electric heaters. The gas medium was air
of 1 atm and room temperature. Thermocouple probes
were used for measuring the wall temperature. The
temperature of the paired pipes was made to be identical
and uniform along the axial direction.

In the case of type A and type B gas lenses, TEM,,
Gaussian beam modes with wavelength A=0.63 u were
used to measure the convergency. The output beam
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leaving the experimental gas lens was deformed to an
axially asymmetric pattern as in Fig. 9(d) or (e). Let
us denote the spot sizes in the x and y directions as w,
and w,, respectively.

At first, the waveform coefficient of the laser beam at
the input boundary of the experimental gas lens,
Py =1/win+jk/Rin was determined theoretically using
the analysis of the Fabry-Perot resonator mode of
He-Ne gas laser used here. The measured imaginary
part of P, was in good agreement with the theoretical
value of P;,. Next, the theoretical waveform coefficient
at the output boundary of the gas lens was calculated
using (34). Let us denote the waveform coefficient as
Pow=Up+jVe in the x direction and P,,=U,,+7V,,
in the y direction, respectively.

When the beam from the gas lens travels a distance
L in free space, the spot sizes w, and w, at this point
are given by (34), and the ratio w,/w, is given by the
following equation,

Iz /‘/Uoz Uo? + (Vo* + k/L)?
on U'o:::2 + (Vox2 + k/L)Z

27

Wy

The measured ratio w,/w, or w,/w, vs. the distance
from the gas lens L is shown in Fig. 10 with correspond-
ing theoretical values. For these lenses with 2a=10
mm, the effects of convection and gravity were not ex-
perienced as long as the temperature difference AT was
lower than approximately 5°C.

In the case of the type C and type D lenses, an auto-
collimator was used to measure its convergency, as
shown in Fig. 11(a).

The image of a cross from an autocollimator was inci-
dent upon the experimental hyperbolic-type gas lens
whose two transverse axes coincided with the two di-
rections along the image of a cross, and reflected back
by a flat mirror with the surface irregularity of smaller
than A/10,

The reflected image of the ray lost its sharpness be-
cause of the convex or concave lens action in x direction
or y direction, respectively. Seeing the gas lens from the
autocollimater side, we can approximately consider the
gas lens as an equivalent mirror with curvature of
1/R(<0) in the x direction and 1/R(>0) in the y
direction, respectively. This lens effect in the x direction
or y direction could be compensated by displacing the
objective O, and the curvature could be measured from
the displacement.

In case of type C gas lens, as an example, the mea-
sured curvature is shown in Fig. 11 vs. AT. Experimental
errors are several percents. The lens action becomes ab-
normal when AT was over approximately 0.9°C. This
is caused by the effect of convection due to gravity.

In case of the type D gas lens with 2a =19 mm, the
lens action became abnormal when AT was over approxi-
mately 2.2°C.

When g-/; is very small, the equivalent curvature 1/R
is approximated by the following equation
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TABLE 11
DDIMENSION OF THE EXPERIMENTAL GASs LENSES
Pipe Se ti Di . . . Maximum
Type 1P2a (glar;a) on C;?i?fiz‘r 20: (?r{ils)s Length /,(mm) Pipe Construction Connection Tegigézrzt;re(%[{fer-
A 10 10 1.0 Fig. 9(a) single 5.0
B 10 10 4.2 Fig. 9(b) two Fig. 9(e) 5.0
C 38 51 2.1 Fig. 9(e) alike single 0.85
D 19 19 0.5 Fig. 9(e) single 2.2
@/Heuter Heater =
PO *—-——,—Or'" 1 i
Q.0 < o i G2 g
RO Radiator O Qs «
\Rudiator & 0 )
(a) (b) Hyperbolic-type gas lens Flat mirror
Autocollimator
E Po (a)
Gas laser Convex 1 Gas {
(63284) (e) o a8 lens -8
T-AT —— Theoretical
Variation of beam spot A
@ o o X~direction
7% =2 m (R<0) ]Meusured
Y M X y~directi;)n *
Wﬂ%ﬂr
y SRy ; : /
—_— L 1.0 7
Pi R };z
Fig, 9. Experimental arrangement on the measurement of the o e °° °
convergent property of hyperbolic-type gas lens. = o /¥ o
‘£ x [0y g
= oo
1.6 > oxxx
14t Theoretical '—Eo /cl
012 e Megsured -5 o p
Gas Lens C
2a=38 mm
lg = 2.1 m
0
0 0.5 1.0 1.5
L(m) AT (°C)
Fig. 10. Experimental results on spot size ratio w,/wy or wy/w: vs. (b)
L which is the distance between the output end of the gas lens and . .
Fig. 11. (a) Experimental arrangement on measurement of the

the measured position. In case of (4), the measured values of
wy/wy correspond to a response of a single-section type-A gas
lens as shown in Fig. 9 with 2AT=5.5°C. In case of (B), values of
w,/ws correspond to a response of a two-section type-B gas lens
as shown in Fig. 4.(e) with 2AT=11.7°C.

1 (e — VAT 1,

ErTo a (28)

From (28) we can see that 1/R is proportional to AT
and is shown in Fig. 11 as the theoretical value with
parameters used in the experiments.

Measured results were in agreement with the theo-
retical values within the experimental errors.

For the type C gas lens, the temperature distribution
in the gas lens medium has been measured by a therm-

equivalent curvature with an autocollimator. (b) Experimental
and theoretical results of the equivalent curvature of the gas
lens whose gas medium is ordinary air at room temperature.

ister probe. It was quadratic as was expected from the
theory. The construction shown in Fig. 9(b) was more
preferable than the configuration shown in Fig. 9(a)
to realize the symmetric temperature distribution when
AT became close to the maximum value.

The maximum temperature difference AT, at which
the normal operation of the hyperbolic-type gas lens is
confirmed, is restricted by the pipe separation 2a. It is
shown in Table II. The relation between the maximum
AT,(°C) and a(mm) is approximated experimentally
as follows,
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AT, X a*34 < 42 (29)

for the ordinary air at T3=293°K and at the region of
between approximately 10 mm and 40 mm.

VI. CoNcrLusioN

In conclusion, this type of light beam waveguide has
the following merits. The temperature distribution is
ideally quadratic in the transverse directions, so that
the mode conversion due to the higher order variation of
the dielectric constant can be minimized. Moreover, the
design procedure is simple, and the mode matching at
the input boundary can be accomplished easily. Also it
is possible to use ordinary air as the lens medium. The
theoretical treatment given here can easily be extended
to the curved guide [6], [8].

Three kinds of experimental hyperbolic-type gas
lenses were made and the operating temperature differ-
ence 2AT, in which the normal operation of the gas lens
is confirmed without any effects of the convection and
the gravity, was determined experimentally.

APPENDIX
THEORETICAL Basrs [8]

The beam mode of the transverse field distribution
in a lens-like medium whose dielectric constant is given
by (1) is expressed by a Hermite-Gaussian function
[4], [8] and given by the following equation,

B/ e ()5 C)
WiWe Wi, Wo,
[ 1(1 +,k(0)> .
. — | — x
cxp 2 w12 I .Rl
1/1  EO0) ﬂ
2 <w22 HE R, )y
1
X exp [—jk(O)z 4+ <{> -+ —-2~> tan—! Fy

1
(v o]

where s; and s, are the beam spot size at 2=0 with a
condition of planary equiphase surface. The spot size
w,, we and the radius of the equiphase surface Ry, R, at
axial distance z are given by the following relation.

Wo 2 .
Wy = 51 cos? gz -+ {—) sin? gz
S1

Wy 4 .
cos® gz -+ | — ) sin? gz

S1

Wo 4 .
— ) — 1 |sin 2gz
St
Wo 2
F,=(—) tan gs
$1

E:

(30)

Rl = 2%(0)7002

(31)

with
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and
Wo 4
wy = $§y cosh? gz (—) sinh? gz
S2
Wo 4
cosh? gz 4 <—) sinh? gz | (32)
5
Rs = 2k(0)awe? :
wWo 4
I:(—) + I:I sinh 2gz
S1
with
Wy 2
F, = <—-> tanh gz.
S
We define a waveform coefficient P,, as
1 CR(0)
P,,.=———2—I—]R (m =1, 2) (33)

which is related to the coefficient of x2? or y? in the ex-
ponent of (30). In case that a Gaussian beam whose
waveform coefficient is Py, is transmitted through a
beam waveguide by a length 2, and the waveform coeffi-
cient at the point is transformed to be P,,, then P, is
related to P,» by the following equation.

AnPom + Bn

P = — (m=1,2)

= 34
CnPom 4 Dn (3%

Here 4., Bm, Cn, and D,, are components of the F
matrix of the beam waveguide in each direction x and
vy, respectively [8]. F matrices associated with a con-
vergent and divergent lens-like medium, and a free
space with length 2 is expressed as follows:

coS g3 7k(0)g-sin gz
convergent medium 1 (35)
L] sin gz CoS g2
k(0)g
cosh gz —7k(0)g-sinh gz
divergent medium | 1 | (36)
g sinh gz cosh gz
k(0)g
1 0
free space 3 . @37
I 1

When the different lens-like media, whose F matrices
are By, By, - - -, F,, are connected in tandem, the total
F matrix is given by the product of them

F = Fl'ﬁz,' . ,Fn. (38)

If a beam waveguide is constructed with a tandem
connection of unit sections, each of which has elements
of F matrix, namely, 4,,, Bn=jB'm, Cp,=3C'n, and D,
the waveform coefficient P, of the natural mode at the
input boundary of each unit section is given as follows,

Pp=[4 4~ (dnt Du)?—j(4dn—~Du)]/(2C")  (39)
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where the sign which must be set as the real part of
P,, becomes positive. The stability condition is given
as follows, using (39)

| Aw + Du| = 2. (40)

When the unit section has a symmetric property in
the axial direction and the elements of the F matrix of
the first half section are A, Bs, Cs, and D, then

P, = \/A.B4/CyDy €5))
and the stability condition is as follows,
AnBiCi Dy £ 0. (42)
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A Switching Circulator: S-Band; Stripline; Remanent;
15 kilowatts; 10 microseconds; Temperature-Stable

F. BETTS, MEMBER, IEEE, D. H. TEMME, MEMBER, IEEE, AND J. A. WEISS, SENIOR MEMBER, IEEE

Abstract—A stripline, three-port remanence circulator switch has
been designed for high-speed switching of time delay in a phased
array radar at S-band (2.9 GHz). Special attention was devoted to
minimizing switching time and energy through design of the magnetic
circuit and suppression of eddy currents. Temperature stabilization
of insertion phase was accomplished by means of a flux regulating
magnetic circuit. Switching performance: time: less than 10 micro-
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seconds; energy: 450 microjoules. Circulator performance: band-
width for >26 dB isolation, 8.9 percent; insertion loss, 0.35 dB.
Temperature stability of insertion phase: one electrical degree per
10°C. Peak RF power: 15 kW. The discussion includes details of the
junction design and performance, techniques of eddy current sup-
pression, temperature stabilization, and the method of switching
energy measurements,

INTRODUCTION

HIS PAPER reports the development of a ferrite
switching circulator suitable for time delay switch-
ing applications in phased array radars. The re-



